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Problem setup
Does a Feynman-Kac functional solve Dirichlet problem?

1. Feynman-Kac functional is

v(x) := E
[ ∫ ζ

0
e−λs`(X(s))ds + e−λζg(X(ζ))

∣∣∣X(0) = x
]

2. Associated Dirichlet PDE is

−Lu(x) + λu(x)− `(x) = 0 on O, with u = g on Oc.

(Q). Does v solve PDE?

I X is Cádlàg Feller with generatorL, i.e. X ∼ L;

O is a connected bounded open set in Rd ;

ζ is exit time from Ō, denoted by ζ = τŌ(X).

I See for traditional time-dependent Feynman-Kac formula at
B Oksendal. Stochastic differential equations. 2003



Example 1
Solvability question

Let O = (0, 1), X ∼ Lu := 1
2 ε

2u′′ + u′ and ζ = τŌ(X).

(Q) Does

v(x) = E
[ ∫ ζ

0
e−s1ds

∣∣∣X(0) = x
]
,

solve ODE below?

−u′ − 1
2
ε2u′′ + u− 1 = 0 on O, and u(0) = u(1) = 0.

Def A function u ∈ C(Ō) is said to be a viscosity solution, if

1. u satisfies the viscosity solution property at each x ∈ O

2. u = g at each x ∈ ∂O.



Example 1
Answer: Yes iff ε > 0.

If ε = 0, the explicit computation of

v = −e−1+x + 1

does NOT satisfy the boundary condition u(0) = 0, while it satisfies u(1) = 0.

i.e. v loses its boundary at 0.

X ∼ Lu := 1
2 ε

2u′′ + u′

v(x) = E
[ ∫ ζ

0 e−s1ds
∣∣∣X(0) = x

]
,

−u′ − 1
2 ε

2u′′ + u− 1 = 0 on O, and u(0) = u(1) = 0.
If ε > 0, then

v(x) = 1 +
(1− eλ1 )eλ2x + (eλ2 − 1)eλ1x

eλ1 − eλ2
,

where

λ1 =

√
1 + 2ε2 − 1

ε2
, and λ2 =

−
√

1 + 2ε2 − 1

ε2
.



Example 1
Literature review: Sufficient condition for solvability

[BS18] v solves PDE if all points on ∂O is regular to Ōc.

In Example 1,

O = (0, 1), X ∼ Lu =
1
2
ε2u′′ + u′.

I If ε > 0, then both 0 and 1 are regular;

I If ε = 0, then both 1 is regular, but 0 is irregular.
Thus, v(0) does not satisfy the boundary condition.
But, v satisfies viscosity solution property at x = 0, which means ...

[BS18] E Bayraktar, Q Song, Solvability of Dirichlet Problems, SICON 2018.

x is regular to Ōc w.r.t. L, if Px(ζ = 0) = 1.



Example 1
Definition of the viscosity property

In Exm 1 with ε = 0,

I x = 0 is irregular and satisfy viscosity solution property.

I Therefore, v is a generalized viscosity solution in the sense of ...

Supertest functions: J+(u, x) = {φ ∈ C∞0 (Rd), s.t. φ ≥ (uIŌ + gIŌc )∗ and φ(x) = u(x)}.
Subtest functions: J−(u, x) = {φ ∈ C∞0 (Rd), s.t. φ ≤ (uIŌ + gIŌc )∗ and φ(x) = u(x)}.
With G(φ, x) = −Lφ(x) + λφ(x)− `(x), consider

G(u, x) = 0, on O and u = 0 on Oc
.

1. u ∈ USC(Ō) satisfies the viscosity subsolution property at some x ∈ Ō, if

G(φ, x) ≤ 0, ∀φ ∈ J+
(u, x).

2. u ∈ LSC(Ō) satisfies the viscosity supersolution property at some x ∈ Ō, if

G(φ, x) ≥ 0, ∀φ ∈ J−(u, x).



Main objective
Definition of the generalized viscosity solution

Def. A function u ∈ C(Ō) is said to be a generalized viscosity solution, if

1. At each x ∈ O, u satisfies the viscosity solution property

2. At each x ∈ ∂O, u satisfies either the viscosity solution property or u = g

Goal Is v a generalized viscosity solution of PDE?

v(x) = E
[ ∫ ζ

0
e−λs

`(X(s))ds + e−λsg(X(ζ))
∣∣∣X(0) = x

]
−Lu(x) + λu(x)− `(x) = 0 on O, with u = g on Oc

.
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A restatement of generalized viscosity solution
Boundary decomposition is a part of unknown

A function u ∈ C(Ō) is said to be a generalized viscosity solution, if u satisfies the
viscosity solution property at each x ∈ Ō \ Γout, where

Γout = {x ∈ ∂O : u = g}.



First sufficient condition
If v ∈ C(Ō), then ...

Lem If v ∈ C(Ō), then v is a generalized viscosity solution of PDE with

Γout ⊃ Ōc,∗ ∩ ∂O.

Rmk Ōc,∗ is fine closure of Ōc, which means ...

Suppose v ∈ C(Ō).

I If x ∈ O, then v satisfies viscosity solution property:
Px(ζ > 0) = 1 and Take Ito’s formula on φ(Xx) for test functions φ.

I If x ∈ ∂O and Px(ζ > 0) = 1, then v satisfies viscosity solution property:
Similar to above, take Ito’s formula on φ(Xx) for test functions φ.

I If x ∈ ∂O and Px(ζ > 0) = 0, then v(x) = g(x) by definitioin.

I x ∈ ∂O and Px(ζ > 0) ∈ (0, 1) is not possible by Blumenthal 0-1 law.



Regularity and Fine topology

Facts on fine topologies refer to Section 3.4 of [CW05].

I A point x is regular (w.r.t. L) for the set B if Px(τBc = 0) = 1;

I Br denotes the set of all regular points for B;

I B∗ = B ∪ Br is called fine closure of B;

I A set A is finely open if Px(τA > 0) = 1 for all x ∈ A.

[CW05] K Chung and J Walsh. Markov processes, Brownian motion, and time symmetry, Springer 2005

In Example 1,

O = (0, 1), X ∼ Lu =
1

2
ε

2u′′ + u′.

Set B = Ōc and Bc = Ō.
If ε > 0, then Br = B∗ = B̄ and Γout ⊃ {0, 1};
If ε = 0, then Br = B∗ = B ∪ {1} and Γout ⊃ {1};

Find an example where Br is a proper subset of B∗ .



Example 2
v /∈ C(O) ⊂ C(Ō)

I Let O = (−1, 1)× (0, 1), X ∼ L = ∂x1 + 2x1∂x2 .

I Does

v(x) = E
[ ∫ ζ

0
e−s1ds

∣∣∣X(0) = x
]

solve PDE in general viscosity sense?

−∂x1 u(x)− 2x1∂x2 u(x) + u(x)− 1 = 0, on O, and u(x) = 0 on Oc.

(A) No.
(Q) When is v ∈ C(Ō)?

Particularly, v(x) = 1− e−ζx
is discontinuous at every point on the curve ∂O1 ∩ ∂O3 , where

ζ
x

= −x1 +
√

1− x2 + x2
1, ∀x ∈ O1 := {x2 ≥ x2

1} ∩ Ō,

ζ
x

= 1− x1, ∀x ∈ O2 := {x2 < x2
1, x1 > 0} ∩ Ō,

ζ
x

= −x1 −
√
−x2 + x2

1, ∀x ∈ O3 := {x2 < x2
1, x1 < 0} ∩ Ō.



Main result

Recall ζ̂ = τO(X) and ζ = τŌ(X).

Thm If Px(X(ζ̂) ∈ Ōc,∗) = 1 for all x ∈ Ō, then v is a g.v.s. of PDE with

Γout ⊃ Ōc,∗ ∩ ∂O.

In particular, if Ōc,∗ = Oc, then Γout = ∂O and v is a v.s.

Why does Example 2 violate the condition?
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Preliminaries on α-stable process

Suppose

I J ∼ −(−∆)α/2 is an α-stable process for some α ∈ (0, 2);

I dXt = bdt + σdJt is X ∼ L := b · ∇ − |σ|α(−∆)α/2 for some σ > 0;

I O be a bounded open set satisfying exterior cone condition.

Then, all points in Oc is regular for Ōc (i.e. Oc = Ōc,∗) iff

either α ≥ 1 or b = 0 holds.



Linear non-stationary equation

Consider

∂tu + b · ∇xu− |σ|α(−∆x)
α/2u + ` = 0 on QT , and u = 0 on PQT .

and

v1(t, x) = Et,x
[ ∫ ζ∧T

t
`(s,Xs)ds

]
where dX(t) = bdt + σdJt, and ζ = τŌ(X).

Cor Let O be a bounded open set satisfying exterior cone condition and σ > 1. If

either b = 0 or α ≥ 1

Then the function v1 is a viscosity solution of PDE.

Apply main result on

w(t, x) = Ey
[ ∫ ζ1

0 e−λr`1(Yr)dr
]
,

−L1w(y) + λw(y)− `1(y) = 0 on QT , and w(y) = 0 onPQT ∩ ∂QT , where

Ys = (t + s, Xt+s), ζ1 := τQ̄T
(Y), y = (t, x), L1w(y) = (∂tu + Lxu)(t, x), `1(y) = eλt`(t, x)



Nonlinear non-stationary equation
HJB equation

Consider solvability of, for γ ≥ 1

−∂tu− |∇xu|γ + (−∆x)
α/2u + 1 = 0 on QT , and u = 0 on PQT .

It is HJB equation, since
I If γ = 1, then write −|∇xu| = infb∈B1 (b · ∇xu),

I If γ > 1, then it is KPZ equation, also we write

−|∇xu|γ = inf
b∈Rd

(−b · ∇u− L(b))

with Lengendre transformation L of the function F(x) = |x|γ

(Rmk) See control theory and HJB formulation to the references below

J. Ma and J. Yong, FBSDE and their Applications, 2007

B Oksendal and A. Sulem, Applied stochastic control of jump diffusions. 2007.

H. Pham, stochastic control with financial applications, 2009.

G. Yin and Q. Zhang Continuous-Time Markov Chains and Applications, 2013

J Yong and X Zhou. Stochastic controls, 1999

J Zhang. Backward stochastic differential equations, 2017.



Nonlinear non-stationary equation
Reducing solvability question by (CP + PM)

Consider solvability of, for γ ≥ 1

−∂tu− |∇xu|γ + (−∆x)
α/2u + 1 = 0 on QT , and u = 0 on PQT .

We assume that comparison principle and Perron’s method hold:

I (CP+ PM) If there exists sub and supersolution, then PDE is uniquely solvable.

(Rmk) Existence of sub and supersolution may not be trivial, Exm 4.6 of [CIL92].

QT := (0, T)× O,PQT := (0, T]× Rd \ QT .

[CIL92] M Crandall, H Ishii, and P Lions. User’s guide to viscosity solutions, Bull. AMS.



Nonlinear non-stationary equation
Existence of sub and supersolution

We want sub and supersolution of

−∂tu− |∇xu|γ + (−∆x)
α/2u + 1 = 0 on QT , and u = 0 on PQT .

I u = 0 is supersolution.

I v1(t, x) = Et,x
[ ∫ ζ∧T

t (−1)ds
]

is a viscosity solution of

−∂tu + (−∆x)
α/2u + 1 = 0 on QT , and u = 0 on PQT .

I Thus, v1 is a subsolution of the nonlinear PDE.
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Summary

I We prove that Feynman-Kac functional is a generalized viscosity solution of
PDE under some conditions; It’s the first attempt to connect generalized
viscosity solution with fine topology.

I This can be applied to answer the existence of the viscosity solution of
non-stationary Dirichlet problem;

I This idea can be extended to the solvability question by changing time into
subordinate process.

I The discount rate can be removed if the integrability condition is added;

I Together with (CP + PM), this answers solvability questions for a class of
nonlinear equations.

I Yet, we do not know if nonlinear Feynman-Kac functional is the Perron’s
solution.
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